

Operating instructions Pressure Probe OTT PLS 500

English

We reserve the right to make technical changes and improvements without notice!

 Table of contents 1 Scope of supply 2 Order numbers and variant code 3 Basic safety information 3.1 Markings and symbols used in the instruction 3.2 Explanation of safety information used 	4 4 5
 2 Order numbers and variant code 3 Basic safety information 3.1 Markings and symbols used in the instruction 3.2 Explanation of safety information used 	4
 3 Basic safety information 3.1 Markings and symbols used in the instruction 3.2 Explanation of safety information used 	
3.1 Markings and symbols used in the instruction 3.2 Explanation of safety information used	5
3.2 Explanation of safety information used	
	5
	5
3.3 Note the following for safe and trouble-free operation	6
4 Introduction	7
5 Installing the pressure probe	9
5.1 Installation type A: fixing the pressure probe into a protective device	10
5.2 Installation type B: hanging the pressure probe	11
5.3 Connecting humidity absorbing system	12
5.4 Wire assignment of the pressure probe cable	12
5.5 Connecting the OTT PLS 500 to any data logger using an SDI-12 interface 5.6 Connecting the OTT PLS 500 to any data logger/electronic control system	13
using an RS-485 interface	13
5.7 Connecting the OTT PLS to the IP data logger OTT netDL using an SDI-12	1.4
or RS-485 interface	14
5.8 Connecting the OTT PLS 500 to the Sutron XLink 100/500 data logger using an SDI-12 or RS-485 interface	15
5.9 Connecting the OTT PLS to the Sutron SatLink 3 data logger using the	15
SDI-12 or RS-485 interface	16
5 Configuring/testing the OTT PLS 500	17
7 SDI-12 Commands and Responses	19
7.1 Overview of SDI-12 commands	19
7.2 Standard commands	23
7.3 Meta data commands	30
7.4 Advanced SDI-12 commands	32
8 RS-485 Interface with Modbus protocol (RTU)	39
8.1 Preconditions	39
8.2 Value ranges	39
8.3 Function "Read Holding Registers" – Sensor description	40
8.4 Function "Read Holding Registers" – Sensor values	43
8.5 Configuration register	44
9 Carrying out maintenance work	46
- carrying our maintenance work	
	48
0 Troubleshooting	48 49
0 Troubleshooting 1 Repair	
0 Troubleshooting 1 Repair 2 Notes about the disposal of old units	49
 Carrying our maintenance work 0 Troubleshooting 1 Repair 2 Notes about the disposal of old units 3 Technical data Annex A – Shorten pressure probe cable 	49 49

1 Scope of supply

OTT PLS 500	– 1 Pressure probe with a ceramic, capacitive, relative pressure measuring cell
	and shielded pressure probe cable with pressure compensation capillary and
	Kevlar-strain relief for length stabilization; SDI-12- and RS-485 interface;
	pre-fabricated cable end with transport protection against moisture

- 1 Factory acceptance test certificate (FAT)

2 Order numbers and variant code

OTT PLS 500	Pressure probe		63.039.001.9.0
	required order information (varic – Protocol RS-485 interface	int code): SDI-12	S
	– Preset units	Modbus metric	M
	– Measuring range	imperial 0 10 m · 33 ft WC / 0 0 20 m · 66 ft WC / 0 0 40 m · 131 ft WC / 0 0 100 m · 328 ft WC / 0	. 2 bar 2 . 4 bar 3
	– Cable length – Humidity absorber	2 200 m · 6.5 656 ft without including FAD 4PF including FAD 6	. To bar 4 xxx.x 0 4 6
	 Operating instructions 	without German English French Spanish	0 D E F S
Accessories	 Humidity absorbing system Desiccant cartridge in wide-new connection hose for pressure connection 	cked bottle with	63.025.021.4.2
	 Humidity absorbing system connecting box (pressure probe data logger/voltage supply) wi cartridge in wide-necked bottle 	e cable connection cable th desiccant	63.039.025.3.2
	Desiccant cartridge – replacement cartridge in transp	port container	97.100.066.4.5
	Cable suspension		97.140.253.9.5
	Connection cable - twisted pair construction; LiYY - PVC, black - 2 x 2 x 0.75 mm ² - unshielded		97.000.040.9.5
	Connection cable - twisted pair construction; FD Cl - PVC, grey - 2 x 2 x 0.5 mm ² - shielded	P (TP)	97.000.039.9.5
	OTT USB/SDI-12 Adapter - for temporary connection of O SDI-12 or RS-485 interface to o - USB connection cable included to USB plug B; 3 m	a PC	65.050.002.9.2

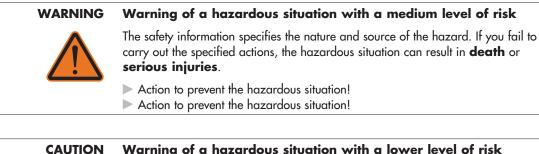
3 Basic safety information

3.1 Markings and symbols used in the instruction

- This bullet point indicates an instruction relating to a specific action.
- This bullet point indicates an item in a list.
 - This bullet point indicates a sub-item in a list.

Remark:

.


- Information on easier and more efficient work
- Further information
- Definition

Please note: ...

Information that prevents potential damage or malfunction on the OTT PLS 500.

3.2 Explanation of safety information used

The safety information used in these operating instructions is classified according to the nature and severity of a particular hazard. The hazard levels defined are indicated by the signal words Warning/Caution and associated pictograms orange/yellow warning triangle in these operating instructions:

Warning of a hazardous situation with a lower level of risk

The safety information specifies the nature and source of the hazard. If you fail to carry out the specified actions, the hazardous situation can result in minor or moderately severe injuries.

- Action to prevent the hazardous situation!
- Action to prevent the hazardous situation!

3.3 Note the following for safe and trouble-free operation

- Read these operating instructions before using the OTT PLS 500 for the first time! Become completely familiar with the installation and operation of the OTT PLS 500 and its accessories! Keep these operating instructions for later reference.
- Only use the OTT PLS 500 as described in the operating instructions! The intended use of the OTT PLS 500 is to measure the water level and water temperature of natural ground and surface waters (hydrometry). Any other use is not permitted! For further information → see Chapter 4, "Introduction".
- Only install and maintain the OTT PLS 500 if you are appropriately qualified to do so! If necessary, arrange training by OTT HydroMet.
- Please note all safety and warning information given with the individual work steps.
- Ensure that the electrical, mechanical, and climatic specifications listed in the technical data are adhered to!
 - For further information \rightarrow see Chapter 13, "Technical data".
- Handle the pressure probe cable with care: do not kink the cable or pull it across sharp edges! Minimum bending radius of pressure probe cable: 49 mm.
- Only operate the OTT PLS 500 with a humidity absorber installed! Service the humidity absorber at regular intervals!
- Do not make any changes or retrofits to the OTT PLS 500! If changes or retrofits are made, all guarantee claims are voided.
- ► Have a faulty OTT PLS 500 inspected and repaired by our repair center! On no account carry out repairs yourself! For further information → see Chapter 11, "Repair".
- After putting the OTT PLS 500 out of service, properly dispose of the device. On no account put the OTT PLS 500 into the normal domestic waste. For further information → see Chapter 12, "Notes about the disposal of old units".
- The product has only the approvals listed and the registrations, certificates and declarations officially provided with the product. The usage of this product in an application for which it is not permitted is not approved by the manufacturer.

4 Introduction

The pressure probe OTT PLS 500 is used for precisely measuring water level of ground and surface waters. The pressure probe uses the hydrostatic pressure of the water column above a relative pressure measuring cell. A pressure compensation capillary in the pressure probe cable gives the measuring cell the current ambient air pressure as a reference. Erroneous measurement results due to atmospheric air pressure fluctuations are thus eliminated.

The OTT PLS 500 can be supplied with various measuring ranges:

- ▶ 0 ... 10 m water column (0 ... 1 bar)
- 0 ... 20 m water column (0 ... 2 bar)
- ▶ 0 ... 40 m water column (0 ... 4 bar)
- ▶ 0 ... 100 m water column (0 ... 10 bar)

The pressure probe has two interfaces that can be used in parallel:

- SDI-12 interface
- EIA-485 (RS-485) interface (SDI-12 or Modbus (RTU) protocol)

The OTT PLS 500 can be configured in many ways via the SDI-12 transparent mode of a data logger or with the aid of the "OTT USB/SDI-12 Adapter" interface converter. For example, a reference or offset value can be entered upon initial setup

A particular feature is that the pressure probe measures the water temperature as well as the hydrostatic pressure of the water column and thus yields highly precise and reproduceable measurement results by compensating effects of temperature, specific density or salinity of the water and the local gravitational acceleration at the specific station. (For this, the specific density or the salinity and the local gravitational acceleration must be entered upon the initial setup.)

The OTT PLS 500 performs four individual measurements within one second; duration 250 milliseconds each. An OTT PLS 500 measurement interval is defined as the arithmetic mean of individual measurements over an adjustable averaging time. The averaging time is 0.5 ... 59.5 seconds (corresponding to 2 ... 238 individual measurements; factory setting: 1.5 seconds).

At the SDI-12 and RS-485 interfaces, the OTT PLS 500 outputs either the water level (compensated) or the hydrostatic pressure as well as the water temperature. Measurement units can be set with SDI-12 commands as $m \cdot cm \cdot mm \cdot ft \cdot inch$ (water level measurement), bar \cdot mbar \cdot kPa \cdot psi (pressure measurement) and °C \cdot °F \cdot K (temperature measurement). The pressure probe is available with preset metric or imperial units by using a variant code.

Two different humidity absorbing systems are available as accesories for drying the ambient air entering the pressure compensation capillary.

The pressure probe is installed either in an individual protective device adapted to the respecive installation site and to be provided by the customer or suspended from the pressure probe cable. A cable suspension specially adapted to the pressure probe cable is available as accessory.

In addition to the actual measured values water level and temperture, the OTT PLS 500 records additional operating parameters and makes them available as meta data. This enables comprehensive remote monitoring of the pressure probe. Also, statistical data within each measurement interval will be determined.

The OTT PLS 500 can also calculate the current discharge of a water course from the measured water level. This is a special function that can be activated as an option. To use this function, a rating table or the factors of the exponential formula according to ISO 1100-2-standard must be entered upon the initial setup.

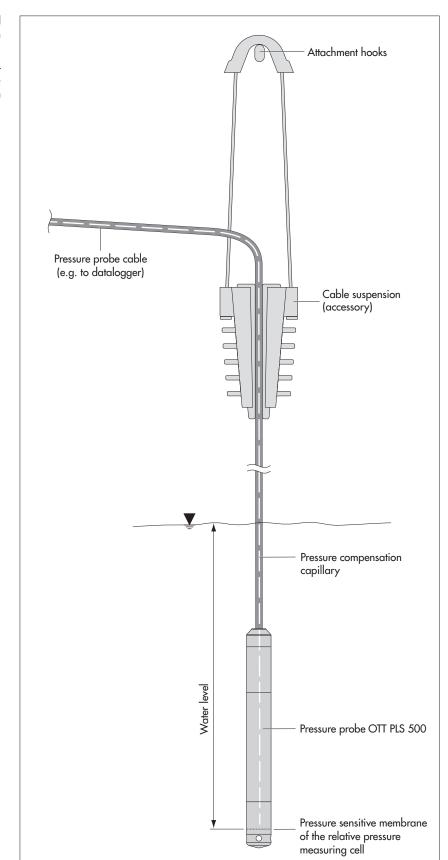


Fig 1: Principal setup of a water level measuring station with pressure probe OTT PLS 500.

(Shown as example: Installation type B – pressure probe suspended; see Chapter 5.2.)

WARNING Risk of explosion due to spark formation and electrostatic charge

If the OTT PLS 500 is operated in an explosive atmosphere, there is a risk of the atmosphere igniting. This can cause an explosion involving a risk of very severe injury and damage.

Never operate the OTT PLS 500 in potentially explosive areas (e.g. waste water channels). The OTT PLS 500 does not have EX protection (explosion protection)!

WARNING Risk of strangulation by pressure sensor cable!

Hanging a pressure sensor cable around the neck during transportation/installa-

- tion can lead to strangulation if sufficient care is not exercised.
- Never hang the pressure probe cable around the neck!

CAUTION Risk of crushing fingers/hands during installation

Fingers/hands can become trapped or crushed when lowering the pressure probe into the observation well/fixing the pressure probe in a protection device.

▶ Wear protective gloves during installation!

The OTT PLS 500 pressure probe can be used in a variety of ways, for example, in observation wells and boreholes from 1" diameter, in shafts, open waterways, and in waterways that do not always hold water.

The pressure probe can be installed in two ways:

- Installation type A: fixed in an individual protection device (e.g. plastic pipe), adapted to the respective instatllation site and to be built on site
- **Installation type B:** hung on the pressure probe cable

Please note: We do not recommend installing the pressure probe in the vicinity of port facilities, industrial waste water discharges or areas with heavy chemical contamination. The pressure probe is constructed from high-quality stainless steel and plastic. However, depending on the mounting location, damaging corrosion can arise. For more information on the materials used, see Chapter 13 "Technical data".

Required accessories

- ▶ Humidity absorber OTT FAD 4PF or OTT FAD 6
- Installation type A: protection device; possibly fixing pin (see Fig. 2)
- Installation type B: OTT cable suspension (see Fig. 1)

Required tools

Screwdriver

Please note: No moisture should be allowed to enter the pressure compensation capillary of the pressure probe cable during installation! Very high humidity can lead to condensed water drops in the pressure compensation capillary due to temperature fluctuations. This results in unusable measurement results! Therefore, leave the transport protection on the cable end during the entire installation phase of the pressure probe cable.

5.1 Installation type A: fixing the pressure probe into a protective device

In flowing waters or waterways with a swell, the pressure probe must be fixed. With strong currents (> $0.5 \dots 1 \text{ m/s}$) the hydrodynamic influences of the station have to be considered in the installation. Depending on the version and mounting of the individual components, overpressure or negative pressure can arise that can affect the measurement result.

- Determine the minimum and maximum water level at your station (e.g. staff gauge, contact gauge). Use both values to specify the probe position. The following conditions must be fulfilled:
 - position the probe below the minimum water level if possible;
 - difference between max. water level and position of the probe < measuring range of the probe.
- Fix the pressure probe according to your individual requirements in a protective device, as shown in Fig. 2 for example.
- Note: The fine setting of the probe position is carried out, for example, by entering a reference or offset value (see Chapter 6, "Configuring/testing the OTT PLS 500") or using a scaling function of the data logger connected.

Plastic protective tube OTT PLS 500 Fixing pin Protective cap

Fig. 2: Installation example of the OTT PLS 500 in open waterways.

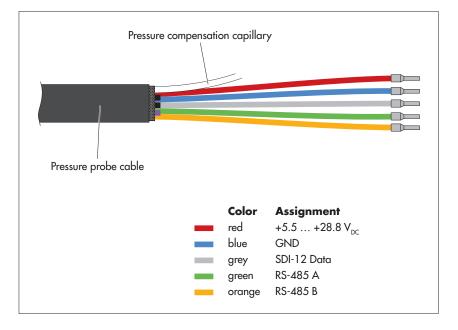
With waterways with currents or swell, a fixing pin is used to securely fasten the probe.

Push the fixing pin through the holes in the black protective cap.

5.2 Installation type B: hanging the pressure probe

See also Fig. 1.

- Determine the minimum and maximum water level at your station (e.g. staff gauge, contact gauge). Use both values to specify the probe position. The following conditions must be fulfilled:
 - position the probe below the minimum water level if possible;
 - difference between max. water level and position of the probe < measuring range of the probe.
- Fix the cable suspension (accessory) at a suitably sized attachment point.
- Carefully lower the pressure probe on the pressure probe cable to the specified depth. There are markings on the cable every 0.25 m to assist orientation.
- Lay the pressure probe cable in the opened clamping jaws of the cable suspenstion as shown in Figure 1 and secure the pressure probe cable by pushing the clamping jaws together. The mechanical longitudinal stability required is provided by the Kevlar-strain relief inside the pressure probe cable.
- Please note: maximum hanging depth: 150 m!
- (greater depths on request).
- Note: The fine setting of the probe position is carried out, for example, by entering a reference or offset value (see Chapter 6, "Configuring/testing the OTT PLS 500") or using a scaling function of the data logger connected. Therefore, in many applications it is sufficient to position the pressure probe approximately.


5.3 Connecting humidity absorbing system

A humidity absorbing system must be installed for drying the surrounding air that enters the pressure compensation capillary of the pressure probe cable!

The humidity absorbers OTT FAD 4PF and OTT FAD 6 are available as accessories (see Chapter 2, "Accessories"). The OTT FAD 6 humidity absorber also serves as connection box (pressure probe cable connection cable data log-ger/voltage supply).

- Install the humidity absorber at a dry place and connect the pressure compensation capillary to the humidty absorber; observe the operating instructions of the humidity absorber used!
- **Please note:** Humidity entering the pressure compensation capillary of the pressure probe cable leads to unusable measurement results!

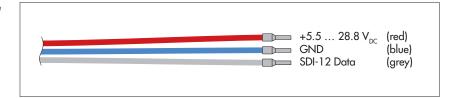
5.4 Wire assignment of the pressure probe cable

Please note: The factory assembled pressure probe cable should only be shortened with a suitable wire stripping tool (see accessories)! Danger of damaging the cable! Recommendation: if required, store a slightly too long pressure probe cable in loops – taking into account the minimum bending radius. Find instructions how to shorten the pressure probe cable in Annex A.

If necessary, the pressure probe cable can be lengthened. For this purpose, use a suitable junction box (e.g. humidity absorber OTT FAD 6). This should be large enough to hold the humidity absorbing system! The maximum cable length for the RS-485 interface is 1,000 m; for the SDI-12 interface 200 m! Recommended cable type for the RS-485 interface: twisted pair cable (paired stranded wires); shielded. The wires provided for the voltage supply can, but do not have to be twisted pairs. Recommended cable type for the SDI-12 interface: unshielded low-voltage cable.

Suitable wire sizes:

- ▶ up to 500 m cable length: 2 x 2 x 0.5 mm² (41 Ohm/1000 m)
- 500 to 1000 m cable length: 2 x 2 x 0.75 mm² (27 Ohm/1000 m)


Fig. 3: Wire assignment of the OTT PLS 500 pressure probe cable.

Note: The pressure probe cable has a cable shield which is shortened to the cable sheath at the factory during stripping. The cable shield must not be connected to earth/ground when installing the OTT PLS 500!

5.5 Connecting the OTT PLS 500 to any data logger using an SDI-12 interface

Connect the OTT PLS 500 to an SDI-12 input of the data logger. Follow the data logger handbook when doing this. Refer to Fig. 4 for the wire assignments of the OTT PLS 500; wires used: red, blue and grey. The maximum cable length is 200 m!

Fig. 4: Wires used with an SDI-12 interface


 Note: In an SDI-12 bus, the supply voltage (12 volt line) is 12 volts according to the standard, max. 16 volts. Take this into account if there are other sensors in the SDI-12 bus in addition to the OTT PLS 500!

Refer to Chapter 5.7 or 5.8 for detailed information on connecting the OTT PLS 500 to OTT/Sutron data loggers.

The SDI-12 commands and responses used with the OTT PLS 500 can be found in Chapter 7, "SDI-12 Commands and Responses".

5.6 Connecting the OTT PLS 500 to any data logger/electronic control system using an RS-485 interface

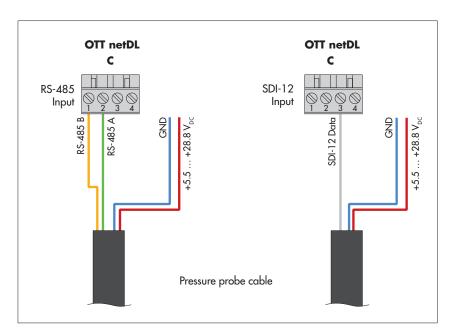
Connect the OTT PLS 500 to an RS-485 input of a data logger/an electronic control system. Follow the handbook of data logger/electronic control system when doing this. Refer to Fig. 5 for the wire assignments of the OTT PLS 500; used wires: red, blue, green and orange. The maximum cable length is 1000 m! Required wire cross section, see Chapter 5.4.

• Note on using the physical RS-485 interface:

Depending on the probe variant, the RS-485 supports the SDI-12 or the Modbus (RTU) transmission protocol. The RS-485 interface in combination with the SDI-12 protocol is designed and tested for use on OTT and Sutron data loggers! OTT Hydromet provides no guarantee of functionality if you connect the OTT PLS 500 via the RS-485 interface (SDI-12 protocol) to a data logger of a third-party manufacturer.

Refer to Chapter 5.7 or 5.8 for detailed information on connecting the OTT PLS 500 to OTT/Sutron data loggers.

The SDI-12 commands and responses used with the OTT PLS 500 can be found in Chapter 7, "SDI-12 Commands and Responses"; find information on the Modbus (RTU) transmission protocol in Chapter 8, Modbus protocol (RTU).


5.7 Connecting the OTT PLS to the IP data logger OTT netDL using an SDI-12 or RS-485 interface

Variant A: Connecting the OTT PLS 500 using an SDI-12 interface (protocol and physical interface: SDI-12). The maximum cable length is 200 m!

Connect the OTT PLS 500 to the IP data logger OTT netDL as shown in Fig. 6 (right). Also follow the operating instructions of the OTT netDL.

Variant B: Connect the OTT PLS 500 using a physical RS-485 interface (SDI-12 protocol via physical RS-485 interface). The maximum cable length is 1000 m! Required wire cross section, see Chapter 5.4.

Connect the OTT PLS 500 to the IP data logger OTT netDL as shown in Fig. 6 (left). Also follow the operating instructions of the OTT netDL.

Configure the OTT netDL IP data logger as described in the operating instructions of the device and in the online help of the "OTT Data Logger Operating Program".

Fig. 6: Connecting the OTT PLS 500 to an OTT netDL using the RS-485interface (SDI-12 protocol; left) or using the SDI-12 interface (right).

The letters above the screw terminal strips identify the connectivity options available on the OTT netDL.

The other (not used) wires of the pressure probe cable are not shown.

5.8 Connecting the OTT PLS 500 to the Sutron XLINK 100/500 data logger using an SDI-12 or RS-485 interface

Variant A: Connecting the OTT PLS 500 using an SDI-12 interface (protocol and physical interface: SDI-12). The maximum cable length is 200m!

Connect the OTT PLS 500 to the Sutron XLINK 100/500 data logger as shown in Fig. 7 (right). Also follow the operating instructions of the Sutron XLINK 100/500.

Variant B: Connect the OTT PLS 500 using a physical RS-485 interface (SDI-12 or Modbus protocol via physical RS-485 interface). The maximum cable length is 1000 m! Required wire cross section, see Chapter 5.4.

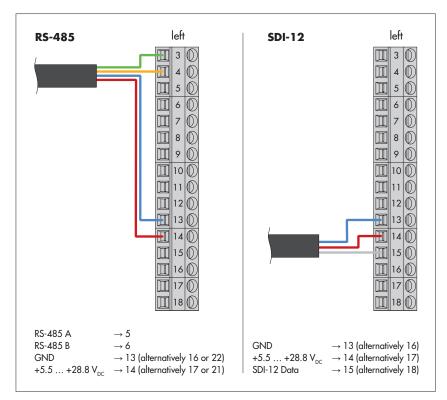
Connect the OTT PLS 500 to the Sutron XLINK 100/500 data logger as shown in Fig. 7 (left). Also follow the operating instructions of the Sutron XLINK 100/500.

left left **RS-485** SDI-12 5 🔘 **I** 5 6 🔘 6 🛈 **I** 7 0 7 \mathbb{O} **I** 8 🔘 1 8 0 II 9 🔘 I 9 🛈 XLINK 100/500 XLINK 100/500 10 🔘 10 0 RS-485 A GND → 5 $\rightarrow 14$ 110 110 RS-485 B → 6 $+5.5 \dots +28.8 V_{DC} \rightarrow 15$ $\rightarrow 14$ GND 12 🔘 SDI-12 Data → 16 12 🔘 $+5.5 \dots +28.8 V_{DC} \rightarrow 15$ 13 🔘 13 🔘 14 🛈 14 🛈 I 15 🔘 15 🔘 m 16 🗊 \mathbb{O} 16 left 5 I I 6 🔘 1 7 🔘 1 8 🔘 9 🔘 **XLINK 500** RS-485 A $\rightarrow 5$ 🛈 21 🔟 RS-485 B → 6 GND → 17 🕦 20 🔟 +5.5 ... +28.8 $V_{\text{DC}} \rightarrow 18$ 🕦 19 🔟 🕦 18 🎚 🕕 17 🔣 right

Configure the Sutron XLINK 100/500 data logger as described in the operating instructions of the device.

Fig. 7: Connecting the OTT PLS 500 to a Sutron XLINK 100/500 via RS-485 interface (SDI-12- or Modbus protocol; left) or via SDI-12 interface (right). The connection of the power supply of the RS-485 interface to a Sutron XLINK 500 can be made in two ways.

The other (not used) wires of the pressure probe cable are not shown.


5.9 Connecting the OTT PLS to the Sutron SATLINK 3 data logger using the SDI-12 or RS-485 interface

Variant A: Connecting the OTT PLS 500 using an SDI-12interface (protocol and physical interface: SDI-12). The maximum cable length is 200 m!

Connect the OTT PLS 500 to the Sutron SATLINK 3 satellite transmitter as shown in Fig. 8 (right). Also follow the operating instructions of the Sutron SATLINK 3.

Variant B: Connecting the OTT PLS 500 using a physical RS-485 interface (SDI-12 or Modbus protocol via physical RS-485 interface). The maximum cable length is 1000 m! Required wire cross section, see Chapter 5.4.

Connect the OTT PLS 500 to the Sutron SATLINK 3 satellite transmitter as shown in Fig. 8 (left). Also follow the operating instructions of the Sutron SATLINK 3.

Configure the Sutron SATLINK 3 satellite transmitter as described in the operating instructions of the device.

Fig. 8: Connectig the OTT PLS 500 to the Sutron SATLINK 3 via RS-485 interface (SDI-12 or Modbus protocol, left) or via SDI-12 interface (right).

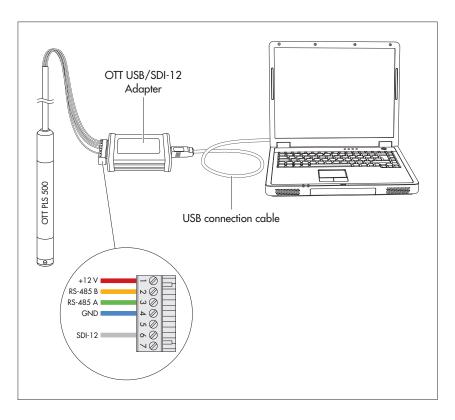
The other (not used) wires of the pressure probe cable are not shown.

6 Configuring/testing the OTT PLS 500

The OTT PLS 500 is immediately ready for operation with the standard configuration provided by factory settings. In this case, the pressure probe operates – depending on the variant code ordered (see Chapter 2) with the factory settings (see Chapter 7).

If required, you can make various settings and enter operating parameters after the installation:

- Units
- Local gravitational acceleration
- Salinity
- Medium water density
- Sensor orientation during installation
- Measurement mode "level" or "depth"
- Averaging time
- Measurement type (single measurement or continuous measurement)
- Offset value for level/depth measurement
- Reference value for level/depth measurement
- Presetting metric or imperial
- Reset pressure probe
- Calculation method discharge measurement
- Rating table and exponential formula for discharge measurement


This configuration is carried out via the "OTT USB/SDI-12 Adapter" interface converter toghether with the "OTT SDI-12 Interface" PC software; optionally via the SDI-12 or RS-485 interface. In addition, it is possible to store the sensor orientation, to carry out a control measurement or a system test. In the event of an error, various meta data can be queried for closer analysis.

For this purpose, the pressure probe must be temporarily connected to a PC via the interface converter.

The PC software automatically detects the connected OTT PLS 500 and conveniently provides the SDI-12 commands available for the configuration as buttons. In Chapter 7.1 you find an overview of these SDI-12 commands.

Alternatively, the configuration can be changed via the "SDI-12 transparent mode" of a data logger (please observe operating instructions of the data logger).

 Note: For more information on the OTT USB/SDI-12 Adapter, please refer to the "Operating instructions OTT USB/SDI-12 Adapter" and "Online help OTT SDI-12 Interface Software"! Fig. 9: Changing the factory configuration of an OTT PLS 500 via SDI-12 commands using the "OTT USB/SDI-12 Adapter".

7 SDI-12 Commands and Responses

The OTT PLS 500 communicates either using the physical SDI-12 interface or the RS-485 interface via the SDI-12 transfer protocol. In this technical documentation, you will find a detailed description of the SDI-12 commands implemented in the SDI-12 transfer protocol.

Further information on the SDI-12 standard can be found in the document "SDI-12; A Serial-Digital Interface Standard for Microprocessor-Based Sensors; Version 1.4" (see website "www.sdi-12.org").

All advanced, manufacturer-specific SDI-12 commands on the OTT PLS 500 begin with " \mathbf{x} ". With these commands it is possible to configure the OTT PLS 500, for example using the "SDI-12 transparent mode" on a data logger or with the OTT USB/SDI-12 adapter (accessory).

Conventions for measured value formats

p - sign (+,-; if it is omitted from entries, the OTT PLS 500 automatically adds a "+")

- b numbers (before the decimal point)
- e numbers after the decimal point

7.1 Overview of SDI-12 commands

Standard commands

▶ a!	Confirmation active
▶ aI!	Send identification
▶ aAb!	Change sensor address
▶ ?!	Query sensor address; factory setting: 0
► aV!	Carrying out a system test
▶ aM! ▶ aM1!	Start the measurement Start measurement including statistical values
<pre>aMC! aMC1!</pre>	Start the measurement and request CRC ¹⁾ Start measurement including statistical values and request CRC ¹⁾
<pre>> aC!</pre> > aC1!	Start concurrent measurement ²⁾ Start concurrent measurement ²⁾ including statistical values
<pre>aCC! aCC1!</pre>	Start concurrent measurement ²⁾ and request CRC ¹⁾ Start concurrent measurement ²⁾ including statistical values and request CRC ¹⁾
 aM2 ! aMC2 ! aC2 ! aCC2 ! 	Query meta data of last measurement Query meta data of last measurement including CRC ¹⁾ Query meta data of last measurement in concurrent mode Query meta data of last measurement including CRC ¹⁾ in concurrent mode
<pre>aR0! aR1!</pre>	Query data of continuous measurements Query data of continuous measurements including statistical values
<pre>aRC0! aRC1!</pre>	Query data of continuous measurements including CRC ¹⁾ Query data of continuous measurements including statistical values and CRC ¹⁾
<pre>aR2! aRC2!</pre>	Query meta data of last measurement for continuous measurements Query meta data of last measurement for continuous measurements including CRC ¹⁾
► aHA! ► aHB!	Start "High Volume ASCII" measurement including statistical values and request CRC ¹⁾ Start "High Volume Binary" measurement including statistical values and request CRC ¹⁾
▶ aD0! ▶ aD1!	Send doto ofter aM!; aM1!; aM2!; aMC!; aMC1!; aMC2!; aC!; aC1!; aC2!; aCC!; aCC1!; aCC2!; aHA!; aV! Send doto ofter aM1!; aM2!; aMC1!; aMC2!; aC1!; aC2!; aCC1!; aCC2!; aHA!; aV!
aD2!	Send data after aM1!; aM2!; aMC1!; aMC2!; aC1!; aC2!; aCC1!; aCC2!; aV!
<pre>aDB0! aDB1!</pre>	Send data after анв! Send data after анв!

¹⁾ Cyclic Redundancy Check

²⁾ simultaneous measurement with multiple sensors on one single bus line

Measured value overview standard commands ¹⁾				
	metric units		imperial units	
▶ Send data (D0) after aM! command				
<value1> level/pressure</value1>	pbbb.eee	[m]	pbbb.eee	[ft]
<value2> water temperature</value2>	pbb.ee	[°C]	pbbb.ee	[°F]
<value3> device status</value3>	see below	r 2/1		[[12]/]]
<value4> discharge ²⁾</value4>	pbbb.eee	[m³/s]	pbbbbb.eee	[ff°/s]
Send data (D0, D1, D2) after aM1! command				
<value1>last single measured value "level/pressure"</value1>	pbbb.eee	[m]	pbbb.eee	[ft]
within the averaging time		[00]		[0 -1
<value2> water temperature</value2>	pbb.ee	[°C]	pbbb.ee	[°F]
<value3> mean of measured values "level/pressure" within the averaging time</value3>	pbbb.eee	[m]	pbbb.eee	[ft]
<value4> minimum of measured values "level/pressure"</value4>	pbbb.eee	[m]	pbbb.eee	[ft]
within the averaging time				16.1
<value5> maximum of measured values"level/pressure" within the averaging time</value5>	pbbb.eee	[m]	pbbb.eee	[ft]
<value6> median of measured values "level/pressure"</value6>	pbbb.eee	[m]	pbbb.eee	[ft]
within the averaging time		[]		161
<value7> standard deviation of measured values "level/pressure" within the averaging time</value7>	pbbb.eee	լայ	pbbb.eee	[ft]
<pre><value8> device status; see below</value8></pre>				
Send data (D0, D1, D2) after aM2! command				
<value1> - relative humidity in the probe housing</value1>	pbb.ee	[% rH]	pbb.ee	[% rH]
<value2> - dew point in the probe housing</value2>	pbb.ee	[°C]	pbb.ee	[°C]
<value3> - current sensor orientation</value3>	pbbb	[°]	pbbb	[°]
<value4> - stored sensor orientation during installation</value4>	pbbb	[°]	pbbb	[°]
<value5> - temperature value of pressure sensor</value5>	pbb.ee	[°C]	pbb.ee	[°C]
<value6> – temperature of internal humidity sensor</value6>	pbb.ee	[°C]	pbb.ee	[°C]
<value7> - pressure value of pressure sensor</value7>	pbbbb.ee	[mbar]	pbbbb.ee	[mbar]
<value8> - standard deviation of pressure value of pressure sensor <value9> - device status; see below</value9></value8>	pbbbb.ee	[mbar]	pbbbb.ee	[mbar]
,				

Device status ³⁾

+0 \rightarrow no error occured

- \rightarrow system reset status flag is set when connecting the operating voltage/upon unexpected reset; +1 deletion after status read out
- → raw value "pressure" outside the calibrated range +2 (1 % tolerance of full scale is considered)
- → raw value "temperature" outside the calibrated range +4
- currently $\geq 5^{\circ}$)⁴⁾ \rightarrow sensor orientation change (deviation since installation +8
- \rightarrow overload pressure sensor (\geq +20 % of measuring range + offset) +16
- → pressure probe was reset to factory settings due to internal system error +32 (including potential flow settings)
- → internal relative humidity was/is above limit (≥ 25 % rH)⁵⁾ +64

⁴⁾ change sensor orientation intended (e.g. new installation): → first reset pressure probe to factory setting with command axSF!

⁵⁾ see also "Please note: ..." in Chapter 9

¹⁾ with factory setting ²⁾ optional with activated discharge measurement; extended command aXDC<value>!³⁾ if several errors/events occur at the same time, the OTT PLS 500 adds up the status values. Example: +20 \rightarrow overload pressure sensor (+16) + raw

Meta data commands

▶ aIM! aIM1! aIM2!	Determine respor	nse to associated am! command (does not start measurement am1! aM2!)
aIMC! aIMC1! aIMC2!		aMC! aMC1! aMC2!	
aIC! aIC1! aIC2!		aC! aC1! aC2!	
aICC! aICC1! aICC2!		aCC! aCC1! aCC2!	
aIHA! aIHB!		aHA! aHB!	
aIV! aIM_001! aIM1_001! aIM2_001!	_	aV ! Query meta data for measured value 1 to 3 ¹ ; measured value in aD Query meta data for measured value 1 to 8; measured value in aD 0 Query meta data for measured value 1 to 9; measured value in aD 0	! aD2! ofter aM1!
aIMC1_001	aIMC_003! ¹⁾ ! aIMC1_008! ! aIMC2_009!		aMC ! aMC ! aMC 2 !
—	aIC_003! ¹⁾ aIC1_008! aIC2_009!		aC! aC1! aC2!
aICC1_001	aICC_003! ¹⁾ ! aICC1_008! ! aICC2_009!		aCC! aCC1! aCC2!
aIHA_001! aIHB_001!	—	Query meta data for measured value 1 to18; measured value in aDC Query meta data for meas. value 1 to17; meas. value in aDB0!, aD	-
aIV_001!	aIV_009!	Query meta data for measured value 1 to 9; value in aD0! at	02! after aV!

¹⁾ 4 discharge measurement activated

Advanced commands (manufacturer-specific)

	aXSU <value>! aXSU!</value>	Set the unit for level/depth measurements Read the unit for level/depth measurements Factory setting: +0 → m (presetting metric); +3 → ft (presetting imperial)
	aXST <value>! aXST!</value>	Set the unit for temperature values Read the unit for temperature values Factory setting: +0 → °C (presetting metric); +1 → °F (presetting imperial)
	aXSD <value>! aXSD!</value>	Set the unit for discharge values Read the unit for discharge values Factory setting: +0 → m³/s (presetting metric); +2 →ft³/s (presetting imperial)
	aXXG <value>! aXXG!</value>	Set local gravitational acceleration Read local gravitational acceleration Factory setting: +9.806650 m/s ²
	aXXS <value>! aXXS!</value>	Set salinity Read salinity Factory setting: +0.000000 mg/l
	aXXR <value>! aXXR!</value>	Set average water density Read average water density Factory setting: +0.999975 kg/dm ³
	aXXO!	Store sensor orientation during installation
	aXAA <value>! aXAA!</value>	Set measuring mode "level" or "depth" Read measuring mode Factory setting: +0 → Measuring mode "level measurement"
	aXXM <value>! aXXM!</value>	Set averaging time Read averaging time Factory setting: +1.5 s
	aXXC <value>! aXXC!</value>	Set measuring mode Read measuring mode Factory setting: +0 → Measuring mode "single measurement"
	aXAB <value>! aXAB!</value>	Set offset value for level/depth measurements Read offset value Factory setting: +0.000 m
	aXAC <value>! aXAC!</value>	Set reference value for level/depth measurements Read reference value Factory setting: +0.000 m
	aXSR <value>! aXSR!</value>	Reset factory settings for units (metric or imperial) Read factory settings for units Factoring setting: depending on the ordered variant code
	aXSF! aXSF+1!	Reset pressure probe to factory settings without communication settings Reset pressure probe to factory settings including communication settings
	aXDC <value>! aXDC!</value>	Set calculation method for discharge measurement Read calculation method for discharge measurement Factory setting: +0 → discharge measurement "deactivated"
P	aXDA <value1>< aXDA<value1><</value1></value1>	value2>! Create table entry rating table (calculation method rating table) value2> <value3>! Enter coefficients for discharge measurement (exponential formula)</value3>
	aXDR <value>! aXDR! aXDR!</value>	Read table entry rating table (calculation method rating table) Read number of entries in rating table (calculation method rating table) Read coefficients for discharge measurement (calculation method exponential formula)
	aXDD <value>! aXDD+99999!</value>	Delete table entry rating table Delete rating table completely

7.2 Standard commands			
Command	Response	Description	
a!	a <cr><lf></lf></cr>	Acknowledgement active a – sensor address; factory setting: 0	
aI!	allcccccccmmmmmmvvv xxxxxxxxxxCR> <lf></lf>	Send identification a - sensor address 11 - SDI-12 protocol version cccccccc - manufacturer's identification (company name) mmmmmm - sensor identification vvv - sensor version (in this case firmware) xxxxxxxxxxxxx - additional identification (in this case serial number; max. 13 characters) OTT PLS 500 response 0140TTHYDROPLs500100	
aAb!	b <cr><lf></lf></cr>	Change sensor address a – old sensor address b – new sensor address	
?!	a <cr><lf></lf></cr>	Query sensor address a – sensor address	
aV!	atttn <cr><lf></lf></cr>	Perform system test a - sensor address ttt - time in seconds until the sensor provides the result of the system test response OTT PLS 500: 000 n - number of measured values response OTT PLS 500: 9	
aD0!	a <value1><value2><value3> <cr><lf></lf></cr></value3></value2></value1>	Send data (after av!) a - sensor address <valuel> - relative humidity in the probe housing measured value format: pbb [% rH] <value2> - dew point in the probe housing measured value format: pbb.ee [°C] <value3> - current sensor orientation measured value format: pbbb [°]</value3></value2></valuel>	
aD1!	a <value4><value5><value6> <cr><lf></lf></cr></value6></value5></value4>	Send data (after av!) a - sensor address <value4> - sensor orientation during installation measured value format: pbbb [°] <value5> - corrected temperature value of pressure sensor measured value format: pbb.ee [°C] <value6> - temperature of internal humidity sensor measured value format: pbb.ee [°C]</value6></value5></value4>	
aD2!	a <value7><value8><value9> <cr><lf></lf></cr></value9></value8></value7>	Send data (after av!) a - sensor address <value7> - corrected pressure value of pressure sensor measured value format: pbbbb.ee [mbar] <value8> - standard deviation of corrected pressure value of pressure sensor within the averaging time ¹⁾ measured value format: pbbbb.ee [mbar] <value9> - device status +0 → no error occured +1 → system reset - status flag is set when connecting the operating voltage/upon unexpected reset; deletion after status read out (Continuation of device status see next page)</value9></value8></value7>	

¹⁾ determined from 2 ... 238 single measurements of a measurement interval, (see command **axxc**!)

Command	Response	Description
		(Continuation of device status from previous page)
		 +4 → raw value "temperature" outside the calibrated range +8 → sensor orientation change (deviation since installation ↔ currently ≥ 5°)¹⁾ +16 → overload pressure sensor (≥ +20 % of measuring range + offset) +32 → pressure probe was reset to factory settings due to internal system error (including potential flow settings) +64 → internal relative humidity was/is above limit (≥ 25 % rH)²)
		Note If several errors/events occur at the same time, the OTT PLS 500 adds up the status values. Example: +20 → overload pressure sensor (+16) + raw value "temperature" outside the calibrated range (+4); values ≥ +128: exclusively for internal service purposes
aM!	atttn <cr><lf> and after 0/1 60 seconds a<cr><lf></lf></cr></lf></cr>	Start measurement – including device status a – sensor address ttt – time in seconds until the sensor has determined the measurement result response OTT PLS 500: 0/1 60 seconds ³⁾ n – number of measured values response OTT PLS 500: 3 (level measurement)

or 4 (discharge measurement)

¹⁾ intended change of sensor orientation (e.g. new installation): → first reset pressure probe to factory setting with command aXSF!
 ²⁾ see also "Please note: ...," in Chapter 9
 ³⁾ depending on the set averaging time; advanced command aXXM<value>!
 In the measurement type "continuous measurement" the time is always 0 seconds (with the exception of the first interval after the start)!

Command	Response	Description
aD0!	a <valuel><value2><value3> <value4><cr><lf></lf></cr></value4></value3></value2></valuel>	<pre>Send data (after aM!) a - sensor address <value1> - mean of measured values "level/pressure"</value1></pre>
aMC!	atttn <cr><lf> and after 0/1 60 seconds a<cr><lf></lf></cr></lf></cr>	rating table missing; = -9998→ entries in the rating table are not sufficient for the calculation Start measurement and request CRC (Cyclic Redundancy Check); for details, see command a <u>M</u> !. The response to the following a <u>D</u> 0! command is extended by a CRC value: a <value1><value2><value3> <value4><crc><cr><lf></lf></cr></crc></value4></value3></value2></value1>
aC!	atttnn <cr><lf></lf></cr>	Start concurrent measurement (simultaneous measurement with multiple sensors on one single bus line); for details, see- command \mathbf{aM} !. The number of measured values in the response to this command has two digits: $\mathbf{nn} = 03$ or 04^{-4} .
aCC!	atttnn <cr><lf></lf></cr>	Start concurrent measurement (simultaneous measurement with multiple sensors on one single bus line) and request CRC (Cyclic Redundancy Check); for details, see command aM!. The number of measured values in the response to this com- mand has two digits: nn = 03 or 04 ⁴). The response to the following aD0! command is extended by a CRC value: a <value1><value2><value3> <value4><crc><cr><lf></lf></cr></crc></value4></value3></value2></value1>
aR0!	a <value1><value2><value3> <value4><cr><lf></lf></cr></value4></value3></value2></value1>	The OTT PLS 500 continuously measures level/pressure, temperature and optionally calculates the discharge. This command permits to retrieve measurement results even without the combination of commands aM!/aD0!; for details, see command aD0! after aM!. Requires measurement type "continuous measurement"; extended command aXXC <value>!</value>

 $^{1 \dots 3)}$ depending on the set unit; extended command **aXSU<value>!**¹⁾; **aXST<value>!**²⁾; **aXSD<value>!**³⁾ ⁴⁾ optional with activated discharge measurement; exteded command **aXDC<value>!**

Command	Response	Description
aRC0!	a <value1><value2><value3> <value4><crc><cr><lf></lf></cr></crc></value4></value3></value2></value1>	The OTT PLS 500 continuously measures level/pressure and temperature, optionally calculates the discharge and requests a CRC value (Cyclic Redundancy Check). This com- mand permits to retrieve measurement results, even without the combination of commands aM!/aD0!; for details, see command aD0! after aM!. Requires measurement type "continuous measurement"; extended command aXXC <value>!</value>
aM1 !	atttn <cr><lf> and after 0/1 60 seconds a<cr><lf></lf></cr></lf></cr>	Start measurement - including statistical values a - sensor address ttt - time in seconds until the sensor has determined the measurement result response OTT PLS 500: 0/1 60 seconds ¹⁾ n - number of measured values response OTT PLS 500: 8
aD0!	a <value1><value2><value3> <cr><lf></lf></cr></value3></value2></value1>	Send data (after aM1!) a - sensor address <value1>- last single measured value "level/pressure" within the averaging time ²) <value2>- water temperature ²) <value3>- mean of measured values "level/pressure" within the averaging time ²) ³)</value3></value2></value1>
aD1!	a <value4><value5><value6> <cr><lf></lf></cr></value6></value5></value4>	Send data (after aM1!) a - sensor address <value4> - minimum of measured values "level/pressure" within the averaging time ^{2) 3)} <value5> - maximum of measured values "level/pressure" within the averaging time ^{2).3)} <value6> - median of measured values "level/pressure" within the averaging time ^{2) 3)}</value6></value5></value4>
aD2!	a <value7><value8><cr><lf></lf></cr></value8></value7>	Send data (after aM1!) a - sensor address <value7> - standard deviation of measured values "level/pressure" within the averaging time ^{2).3)} <value8> - device status; see aD2! after aV!</value8></value7>
aMC1!	atttn <cr><lf> and after 0/1 60 seconds a<cr><lf></lf></cr></lf></cr>	Start measurement and request CRC (Cyclic Redundancy Check); for details, see command am1!. The response to the following aDO! aD2!command is extended by a CRC value: a <valuex><valuex><crc><cr><lf></lf></cr></crc></valuex></valuex>
aC1!	atttnn <cr><lf></lf></cr>	Start concurrent measurement (simultaneous measurement with multiple sensors on one single bus line); for details, see- command $aM1!$. The number of measured values in the response to this command has two digits: $nn = 08$.
aCC1!	atttnn <cr><lf></lf></cr>	Start concurrent measurement (simultaneous measurement with multiple sensors on one single bus line) and request CRC (Cyclic Redundancy Check); for details, see command aM1!. The number of measured values in the response to this command has two digits: nn = 08. The response to the following aD0! aD2! command is extended by a CRC value: a <valuex><valuex><valuex> <crc><cr><lf></lf></cr></crc></valuex></valuex></valuex>

¹⁾ depending on the set averaging time; extended command aXXM<value>!
 In the measurement type "continuous measurement" the time is always 0 seconds (with the exception of the first interval after the start)!
 ²⁾ for measured value formats, see aD0! after aM! (depending on the set unit)
 ³⁾ determined from 2 ... 238 single measurements of a measurement interval (see command aXXC!)

Command	Response	Description
aR1!	a <value1><value2><value3> <value4><value5><value6> <value7><value8><cr><lf></lf></cr></value8></value7></value6></value5></value4></value3></value2></value1>	The OTT PLS 500 continuously measures level/pressure and temperature and determines statistical values. This command permits to retrieve measurement results even without the combination of commands aM1!/aD0! aD2!; for details, see command aD0! aD2! after aM1!. Requires measurement type "continuous measurement"; extended command aXXC <value>!</value>
aRC1!	a <value1><value2><value3> <value4><value5><value6> value7><value8><crc><cr><lf></lf></cr></crc></value8></value6></value5></value4></value3></value2></value1>	The OTT PLS 500 continuously measures level/pressure, tem- perature, determines statistical values and requests a CRC value (Cyclic Redundancy Check). This command permits to retrieve measurement results even without the combination of commands aM1!/aD0! aD2!; for details, see command aD0! aD2! after aM1!. Requires measurement type "continuous measurement"; extended command aXXC <value>!</value>
aM2 !	atttn <cr><lf> and after 0/1 60 seconds a<cr><lf></lf></cr></lf></cr>	Start measurement - including meta data a - sensor address ttt - time in seconds until the sensor has determined the measurement result response OTT PLS 500: 0/1 60 seconds ¹⁾ n - number of measured values response OTT PLS 500: 9
aD0!	a <value1><value2><value3> <cr><lf></lf></cr></value3></value2></value1>	Send data (after aM2!) a - sensor address <value1> - relative humidity in the probe housing measured value format: pbb.ee [% rH] <value2> - dew point in the probe housing measured value format: pbb.ee [°C] <value3> - current sensor orientation measured value format: pbbb [°]</value3></value2></value1>
aD1!	a <value4><value5><value6> <cr><lf></lf></cr></value6></value5></value4>	Send data (after aM2!) a - sensor address <value4>- stored sensor orientation during installation measured value format: pbbb [°] <value5>- temperature value of pressure sensor measured value format: pbb.ee [°C] <value6>- temperature of internal humidity sensor measured value format: pbb.ee [°C]</value6></value5></value4>
aD2!	a <value7><value8><value9> <cr><lf></lf></cr></value9></value8></value7>	Send data (after aM2!) a - sensor address <value7> - pressure value of pressure sensor measured value format: pbbbb.ee [mbar] <value8> - standard deviation of pressure value of pressure sensor²⁾ measured value format: pbbbb.ee [mbar] <value9> - device status; see aD2! after aV!</value9></value8></value7>
aMC2!	atttn <cr><lf> and after 0/1 60 seconds a<cr><lf></lf></cr></lf></cr>	Start measurement and request CRC (Cyclic Redundancy Check); for details, see command aM2!. The response to the following aD0! aD2! command is extended by a CRC value: a <valuex> <valuex><valuex><crc><cr><lf></lf></cr></crc></valuex></valuex></valuex>

¹⁾ depending on the set averaging time; extended command aXXM<value>!
 In the measurement type "continuous measurement" the time is always 0 seconds (with the exception of the first interval after the start)!
 ²⁾ determined from 2 ... 238 single measurements of a measurement interval (see command aXXC!)

Response	Description		
atttnn <cr><lf></lf></cr>	Start concurrent measurement (simultaneous measurement with multiple sensors on one single bus line); for deteails, see command $aM2!$. The number of measured values in the response to this command has two digits: $nn = 09$.		
atttnn <cr><lf></lf></cr>	Start concurrent measurement (simultaneous measurement with multiple sensors on one single bus line) and request CRC (Cyclic Redundancy Check); for details, see command aM2!. The number of measured values in the response to this com- mand has two digits: nn = 09. The response to the following aD0! aD2! command is extended by a CRC value: a <valuex><valuex> <crc><cr><lf></lf></cr></crc></valuex></valuex>		
a <value1><value2><value3> <value4><value5><value6> <value7><value8><cr><lf></lf></cr></value8></value7></value6></value5></value4></value3></value2></value1>	The OTT PLS 500 continuously measures level/pressure and temperature and determines meta data. This command per- mits to retrieve measurement results even without the combine tion of commands aM2!/aD0! aD2!; for details, see command aD0! aD2! after aM2!. Requires measurement type "continuous measurement"; extended command aXXC <value>!</value>		
a <value1><value2><value3> <value4><value5><value6> <value7><value8> <crc><cr><lf></lf></cr></crc></value8></value7></value6></value5></value4></value3></value2></value1>	The OTT PLS 500 continuously measures level/pressure and temperature, determines meta data and requests a CRC value (Cyclic Redundancy Check). This command permits to retrieve measurement results even without the combination of commands aM2!/aD0! aD2!; for details, see command aD0! aD2! after aM2!. Requires measurement type "continuous measurement"; extended command aXXC <value>!</value>		
atttnnn <cr><lf></lf></cr>	Start "High volume" measurement in ASCII format and request CRC (Cyclic Redundancy Check) a - sensor address ttt - time in seconds until the sensor has determined the measurement result response OTT PLS 500: 0/1 60 seconds ¹⁾ nnn - number of measured values response OTT PLS 500: 18		
a <value1><value2><value3> <value4><value5><value6> <value7><value8><value9> <crc><cr><lf></lf></cr></crc></value9></value8></value7></value6></value5></value4></value3></value2></value1>	<pre>Send data (after aHA!) a</pre>		
	atttnn <cr><lf> atttnn<cr><lf> atttnn<cr><lf> a<value1><value2><value3> <value4><value5><value6> <value7><value8><cr><lf> a<value1><value8> <crc><cr><lf> atttnnn<cr><lf> atttnnn<cr><lf></lf></cr></lf></cr></lf></cr></crc></value8></value1></lf></cr></value8></value7></value6></value5></value4></value3></value2></value1></lf></cr></lf></cr></lf></cr>		

¹⁾ depending on the set averaging time; extended command aXXM<value>!
 In the measurement type "continuous measurement" the time is always 0 seconds (with the exception of the first interval after the start)!
 ²⁾ for measured value formats see aD0! after aM! (depending on the set unit)
 ³⁾ determinded from 2 ... 238 single measurements of a measurement interval (see command aXXC!)

Command	Response	Description
aD1!	<pre>a<value10><value11><value12> <value13><value14><value15>. <value16><value17><value18>. <crc><cr><lf></lf></cr></crc></value18></value17></value16></value15></value14></value13></value12></value11></value10></pre>	
		Note Measured value discharge = $-9999 \rightarrow$ calculation error occured or rating table missing; = $-9998 \rightarrow$ entries in the rating table are not sufficient for calculation
aHB!	atttnnn <cr><lf></lf></cr>	Start "High volume" measurement in binary format and request CRC (Cyclic Redundancy Check) a – sensor address ttt – time in seconds until the sensor has deter- mined the measurement result response OTT PLS 500: 0/1 60 seconds ¹⁾ nnn – number of measured values response OTT PLS 500: 17
aDB0!	Binary data header SDI-12 sensor address "0"; packet size 64 bytes; 9 IEEE 32-bit floating point numbers with single precision Binary data	Send data (after aHB!) IEEE 32-bit floating point numbers with single precision <value1><value17> The measured values correspond to the description of aD0! and aD1! after aHA!</value17></value1>
aDB1!	Binary data header SDI-12 sensor address "0"; packet size 2 bytes; 4 unsigned 16-bit integer values Binary data	Send data (after aHB!) unsigned 16-bit integer values <value1> device status; see aD2! after aV!</value1>

¹⁾ depending on the set averaging time; advanced command **aXXM<value>**! In the measurement type "continuous measurement" the time is always 0 seconds (with the exception of the first interval after the start)!

7.3 Meta data commands

Command	Response	Description
aIM! aIM1! aIM2! aIMC1! aIMC1! aIMC2! aIC1! aIC2! aICC! aICC2! aICC2! aIHA! aIHB!	<pre>atttn<cr><lf> atttn<cr><lf> atttn<cr><lf atttn<cr=""><lf atttn<cr=""><lf> atttn<cr><lf> atttn<cr><lf> atttn<cr><lf> atttnn<cr><lf> atttnn</lf></cr> </lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></cr></lf></lf></lf></cr></lf></cr></lf></cr></pre>	The response is identical to the corresponding measurement command (aM!, aM1!, aM2!, aMC!, aMC1!,). These commands did not start a measurement! For a description of the responses, see commands aM!, aM1!, aM2!, aMC!, aMC1!,
aIV!	atttn <cr><lf></lf></cr>	The response is identical to the corresponding command "Start system test" (\mathbf{av} !). This command does not start a system test! For a description of the response, see command \mathbf{av} !
aIM_00X! ¹) aIM1_00X! ²) aIM2_00X! ³) aIMC_00X! ¹) aIM1C_00X! ²) aIM2C_00X! ³) aIC_00X! ¹) aIC1_00X! ²) aIC2_00X! ³) aICC_00X! ¹) aICC2_00X! ³) aICC2_00X! ³) aIHA_00X! ⁴) aIHB_00X! ⁴) aIV_00X!! ³)	a, <field1>,<field2>, <field3>;<crc><cr><lf></lf></cr></crc></field3></field2></field1>	The OTT PLS 500 sends meta data for the related measured value <valuex>⁵) in the form of three data fields. These commands do not start a measurement! The measured value code (<field1>) and the unit designa- tions (<field2>) correspond to the "SHEF" standard (see "Standard Hydrometeorological Exchange Format (SHEF) – Code Manual" of the "National Weather Service". a - sensor address <field1> - measured value code · water level: HA · HB · temperature: TW · TA · TD · humidity: XR · pressure: PE · device status: OS <field2> - unit · length: M · CM · MM · INCH · FT · pressure: BAR · MBAR · KPA · PSI · temperature: DC · DF · DK · humidity: % · discharge: CMS · LS · CFS · acceleration: mg · angle: DEG</field2></field1></field2></field1></valuex>

(Continuation of description see next page)

¹⁾ Variable ...X: from 1 to 3 or 4
²⁾ Variable ...X: from 1 to 8
³⁾ Variable ...X: from 1 to 9
⁴⁾ Variable ...X: from 1 to 17
⁵⁾ Part of the response to the command aD0!, aD1!, aD2! (after aM!, aM1!, aMC!, ...)
⁶⁾ https://vlab.noaa.gov/web/mdl/shef-information (BAR · KPA · MM → no official SHEF Code)

Command	Response	Description
		(Continuation of the description from previous page)
		<field3>- textual description</field3>
		<field3>- textual description Last ring buffer pressure/level¹ Mean pressure/level¹ Min. pressure/level¹ Max. pressure/level¹ Median pressure/level¹ Standard deviation pressure/level¹ High accuracy temperature Inside humidity Inside dew point Inside temperature Current orientation Stored orientation Device status Mean temperature pressure sensor</field3>
		Standard deviation pressure
		Mean pressure
		Corrected mean pressure Discharge
		<crc> - CRC value ²</crc>

¹⁾ depending on the set unit; extended command **aXSU<value>**! (level or pressure measurement) ²⁾ only for **aIMC_00X**!, **aICC_00X**!, **aIMC1_00X**!, **aIMC2_00X**!, **aIMC2_00X**!, **aICC2_00X**!

Examples for meta data commands

0IM!	\rightarrow 011003 <cr><lf></lf></cr>
5IV!	\rightarrow 511009 <cr><lf></lf></cr>

0IM_002!	\rightarrow 0,PE,MBAR,Mean pressure; <cr><lf></lf></cr>
0IM2 007!	\rightarrow 0,TW,DK,High accuracy temperature; <cr><lf></lf></cr>

7.4 Advanced SDI-12 commands

Command	Response	Description		
Set/read the unit of level/pressure measured values				
► Set/read the uni aXSU <value>! aXSU!</value>	t of level/pressure measured values a <value><cr><lf> a<value><cr><lf></lf></cr></value></lf></cr></value>	Set unit Read unit a - sensor address <value> - Units for water level measurement +0: m +1: cm +7: mm +2: ft +5: inch The level measurement is carried out with com- pensation of water density/salinity, water temper- ature and local gravitational acceleration! Units for pressure measurement +3: mbar +4: psi +6: bar +9: bar</value>		
		+8: kPa Pressure measurement is done w/o compensation!		
		Factory setting: m or ft1)		
		Note An "Offset" or "Reference" value can only be used if units are set to meter or feet!		
Set/read the unit	t of measured temperature values			
aXST <value>! aXST!</value>	a <value><cr><lf> a<value><cr><lf></lf></cr></value></lf></cr></value>	Set unit Read unit a - sensor address <value> - +0: °C +1: °F +2: K</value>		
		Factory setting: °C or °F ¹⁾		
Set/read the unit	t of measured discharge values	, 2		
aXSD <value>! aXSD!</value>	a <value><cr><lf> a<value><cr><lf></lf></cr></value></lf></cr></value>	Set unit Read unit a - sensor address <value> - +0: m³/s +1: ³/s +2: ft³/s</value>		
Store sensor orie	entation during installation ²⁾	Factory setting: m^3/s or $ft^3/s^{1)}$		
aXXO! ³⁾	atttn <cr><lf></lf></cr>	Store sensor orientation		
		Description of response: see command am!		
		With this command you can determine and store the sensor orientation during installation. In case of an error, the stored value can be checked against the current sensor orientation. (command av !)		
		Note		

This command starts a subsequent measurement with the set averaging time.

¹⁾ depending on the ordered variant code

²⁾ intended change of sensor orientation (e.g. new installation): \rightarrow first reset pressure probe to factory setting with command **aXSF**! ³⁾ **a**XX0! \rightarrow Character "O"

Command

Response

Set/read local gravitational acceleration

aXXG<value>! a<value><CR><LF> a<value><CR><LF> aXXG

Set/read salinity

aXXS<value>! aXXS!

a<value><CR><LF> a<value><CR><LF>

Set/read average water density

aXXR <value>!</value>	a <value><cr><lf></lf></cr></value>
aXXR!	a <value><cr><lf></lf></cr></value>

Description

Set local gravitational acceleration Read local gravitational acceleration a – sensor address <value> -b.eeeeee

Value range: 9.780360 ... 9.832080 m/s² Factory setting = 9.806650 m/s^2

The gravitational acceleration at the earth's surface varies between 9.78036 m/s² at the equator and 9.83208 m/s² at the poles. Also, it decreases by 0.003086 m/s² for each kilometer of elevation above sea level.

Formula for the local gravitational acceleration "g" in m/s²: $g = 9.780356(1 + 0.0052885 sin^2 - 0.0000059 sin^2 2) -$ 0.003086h

latitude; h height above sea level in km

(Reference: Jursa, A.S., Ed., Handbook of Geophysics and the Space Environment, 4th ed., Air Force Geophysics Laboratory, 1985, pp. 14-17).

Example

Local gravitational acceleration in Kempten (Germany): At a height above sea level of 669 m and a latitude of 47.71° , a local gravitational acceleration of 9.80659 m/s² results.

Note

The OTT PLS 500 is preset to an average value for Germany (Kassel). The measured value deviation caused by gravitational acceleration is ±3 mm in Germany (Flensburg - Oberstdorf). This measurement error is compensated by inputting the local gravitational acceleration.

Set salinity Read salinity a - sensor address <value> - bbbb.eee

Value range: 0 ... 500000 g/l Factory setting = 0 g/l

Using this command, you can set the salinity at your station during the level/depth measurement. This is useful, for example, for stations with increased salinity. Alternatively, it is also possible to set the average water density.

Set average water density Read average water density a – sensor address <value> -b.eeeeee

Value range: 0.500000 ... 2.000000 kg/dm³ Factory setting = 0.999975 kg/dm^3 (at 0 °C)

Using this command, you can set the actual water density at your station during level/depth measurement. This is useful, for example, at stations with brackish water. Alternatively, it is also possible to set the salinity.

Command

Response

Set/read depth measurement measuring mode

aXAA<value>! a<value><CR><LF> aXAA! a<value><CR><LF>

Set/read averaging time

aXXM <value>!</value>	a <value><cr><lf></lf></cr></value>
aXXM!	a <value><cr><lf></lf></cr></value>

Set/read measurement type

aXXC <value>!</value>	a <value><cr><lf></lf></cr></value>
aXXC!	a <value><cr><lf></lf></cr></value>

Description

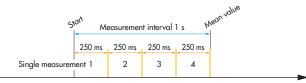
Set measuring mode depth measurement Read measuring mode a - sensor address <value> -+0 = measuring mode depth deactivated +1 = measuring mode depth activated

Factory setting: $+0 \rightarrow$ depth measurement deactivated

Set averaging time Read averaging time a - sensor address <value> - bb.e Input/output without leading zero!

Value range: 0.5 ... 59.5 s Factory setting: 1.5 s

Note


This command starts a subsequent measurement with the set averaging time.

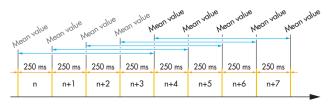
Set measurement type Read measurement type a - sensor address <value> -+0: single measurement +1: continuous measurement, interval mode +2: continuous measurement, floating mode

Factory setting: $+0 \rightarrow$ measurement type "single measurement"

An OTT PLS 500 measurement interval is defined as arithmetic mean of single measurements over an adjustable averaging time. A single measurement takes 250 milliseconds. The averaging time is 0.5 ... 59.5 seconds.

Single measurement: The OTT PLS 500 is in the idle state by default. An SDI-12 measurement command starts a single measurement interval over the set averaging time. This measurement type is available in parallel on the SDI-12- and RS-485 interfaces.

Continuous measurement, interval mode: In interval mode, single measurements take place continuously one after the other. The OTT PLS 500 immediately responds to an **aRx**! command with a measured value (with the exception of the first interval after the start). This value is always updated after the averaging time has expired. The response to an **aMx**! command indicates the time until the averaging time has expired and an updated value is available.


Mean value	easurement	interval m	:1s N	lean value Meas	urement ir	nterval m+	1:1s N	lean value
250 ms	250 ms	250 ms	250 ms	250 ms	250 ms	250 ms	250 ms	+
n	n+1	n+2	n+3	n+4	n+5	n+6	n+7	

Set/read offset for level measurement aXAB<value>! attt1<CR><LF> aXAB!

1) depending on the set unit; extended command aXSU<value>!

Description

Continuous measurement, floating mode: in the floating mode, individual measurements are also taken continuously one after the other, and starting from the most recent value, the calculation of the mean value is carried out backwards. The OTT PLS 500 also immediately responds to an **aRx**! command with a measured value. However it is updated with each individual measurement.

Set offset value Read offset value a - sensor address <value> - pbbbb.eee 1)

Input/output without leading zeros! Value range: -9999.999 ... +9999.999 Factory setting= +0.000

With this command, you can apply a linear offset (positive/negative) to a level measurement value. After setting the offset, the OTT PLS 500 automatically starts a measurement. Then check the measured value with the aDO! command.

Caution

This command overwrites a possibly set reference value!

Example

Measured value = +10.040 m Offset = -0.200 m Output = +9.840 m

Notes

- A subsequent change of the unit (aXSU<value>!) may result in rounding errors of ±0.001.
- If the unit of level measurement is set to pressure values (aXSU<value>!), a measurement is already active or an error has occured, the OTT PLS 500 responds with a service request (a<CR><LF>).

Command	Response	Description
Set/read reference	ce value for level/depth measurement	
aXAC <value>! aXAC!</value>	attt1 <cr><lf> a<value><cr><lf></lf></cr></value></lf></cr>	Set reference value Read reference value a - sensor address <value> - pbbbb.eee 1)</value>
		Input/output without leading zeros! Value range: –9999.999 +9999.999 Factory setting = +0.000
		With this command, you can establish, for example, a refer- ence to a level zero point during level measurement by entering a reference value. After setting the reference value, the OTT PLS 500 automatically starts a measurement. Then check the measured value with the aD0! command.
		Caution This command overwrites a possibly set offset value!
		Example Measured value= +2.100 m Reference value = +1.500 m Output = +1.500 m (Offset calculated by the OTT PLS 500 and applied to all other measured values = +0.600 m)
		 Notes A subsequent change of the unit (aXSU<value>!) may result in rounding errors of ±0.001.</value> If the unit of level measurement is set to pressure values (aXSU<value>!), a measurement is already active or an error has occured, the OTT PLS 500 does not respond.</value>
Reset/read all un	its to default (metric or imperial)	
aXSR <value>! aXSR!</value>	a <value><cr><lf> a<value><cr><lf></lf></cr></value></lf></cr></value>	Reset units to default Read default units a - sensor address <value> - +0: metric +1: imperial +2: individual customer setting (only for reading) This command resets all - potentially individually changed - units to metric or imperial values (according to the delivery</value>
		state). The factory setting depends on the ordered variant code.
Reset pressure pr	obe to factory settings without communicati	on settings
aXSF!	a <cr><lf></lf></cr>	Reset pressure probe a – sensor address
		Resets all settings to factory values (delivery state according to the ordered variant code). Individually changed communication settings on the RS-485 interface (Modbus, SDI-12) remain unchanged.
		RS-485 protocol → unchanged Units → default metric or imperial

¹⁾ depending on the set unit; extended command **aXSU<value>!**

Command	Response	Description
Reset pressure pr	obe to factory settings including communic	ation settings
aXSF+1!	a <cr><lf></lf></cr>	Reset pressure probe a – sensor address
		Resets all settings – including potentially changed commu- nication settings on the RS-485 interface (Modbus, SDI-12) to factory values (delivery state according to the ordered variant code).
		RS-485 protocol → - Modbus; measurement type continu- ous measurement, interval mode - SDI-12; measurement type single measurement
		Units → default metric or imperial
Set calculation m	ethod discharge measurement	
aXDC <value>! aXDC!</value>	a <value><cr><lf> a<value><cr><lf></lf></cr></value></lf></cr></value>	Set calculation method Read calculation method a - sensor address <value> - +0: deactivated; factory setting +1: activated, calculation method rating table +2: activated, calculation method according to Standard ISO 1100-2, exponential formula</value>
		$Q = p (h-e)^{\beta}$
		h = level at water surface e = effective level at discharge = 0 β = gradient of the rating curve p = constant which numerically corresponds to discharge at (h-e) = 1
Create table entr	y in rating table (calculation method rating	table)
	a <value1><value2><cr><lf></lf></cr></value2></value1>	Create table entry a – sensor address <value1> – water level at related discharge <value2> – discharge at related water level</value2></value1>
		Notes - precondition: calculation method rating table is activated - maximum 50 table entries - entries are sorted automatically - unit water level: as specified by aXSU! (if a pressure unit is set, "m" is used alternatively) - unit discharge: as specified by aXSD! Example aXDA<+5.750><+63.000>!
	for discharge measurement (calculation met	
aXDA <value1> <value2> <value3>!</value3></value2></value1>	a <value1><value2><value3> <cr><lf></lf></cr></value3></value2></value1>	Set coefficient a - sensor address <value1> - factor "e" of exponential formula; offset; factory setting = +0.000 <value2> - factor "p" of exponential formula; scaling; factory setting = +1.000 <value3> - factor "β" of exponential formula; exponent; factory setting = +1.000</value3></value2></value1>

Note

- precondition: calculation method exponential formula is activated

Example

aXDA<+1.260><+21.800><+2.540>!

Command	Response	Description
Read table entry	in rating table (calculation method rating to	able)
aXDR <value1>!</value1>	a <value2><value3><cr><lf></lf></cr></value3></value2>	Read table entry a – sensor address <value1> – entry (index) in the table to read out <value2> – water level at related discharge <value3> – discharge at related water level</value3></value2></value1>
		Notes - precondition: calculation method rating table activated - entries are sorted automatically - unit water level: as specified by aXSU! (if a pressure unit is set, "m" is used alternatively) - unit discharge: as specified by aXSD!
Read number of	entries in rating table (calculation method r	rating table)
aXDR!	a <value><lf></lf></value>	Read number of table entries a – sensor address <value> – number of table entries</value>
		Note precondition: calculation method rating table activated
Read coefficient e	exponential formula (calculation method ac	cording to Standard ISO 1100-2)
aXDR!	a <value1><value2><value3> <cr><lf></lf></cr></value3></value2></value1>	Read coefficient a – sensor address <value1> – factor "e" of exponential formula; offset <value2> – factor "p" of exponential formula; scaling <value3> – factor "β" of exponential formula; exponent</value3></value2></value1>
		Note - precondition: calculation method exponential formula acti- vated
Delete table entry	v in rating table (calculation method rating	table)
aXDD <value>!</value>	a <cr><lf></lf></cr>	Delete table entry a – sensor address <value> – entry (index) in the table to be deleted</value>
		Note precondition: calculation method rating table activated
Delete rating tabl	le completely (calculation method rating tak	ble)
aXDD+9999!	a <cr><lf></lf></cr>	Delete rating table completely a – sensor address
		This command deletes a rating table completely.
		N

Note

 precondition: calculation method rating table activated and at least one table entry is available

8.1 Preconditions

► OTT PLS 500 variant code: → Protocol RS-485 interface	M Modbus			
			a .	

- Measurement type
- Interface
- Transmission parameter
- ▶ Transmission speed
- Bus address

continuous measurement (interval mode or floating mode) EIA-485 (RS-485) 8 Data bit, 1 Stop bit, Even parity 9 600 (factory setting), 19200 1 ... 247

8.2 Value ranges

16-bit Integer values

Modbus Register	1															
Byte	0								1							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

int range: -32767 ... 32767 uint range: 0 ... 65534 biffield16 range: 0 ... 0x7FFF

32-bit Integer values

Modbus Register		l	2					
Byte	0	1	3	4				
Bit	31 24	23 16	15 08	07 00				

int range: -214483647 ... 214483647 uint range: 0 ... 4294967294

Floating point values

Modbus Register	1															
Byte	0								1							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IEEE 754	sign	Exp	one	nt					Fra	ctior	1					

Modbus Register	2															
Byte	2								3							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IEEE 754	Fra	ctior	lea	st												

float32 range: see IEEE 754

String values

Modbus Register		I	2	2		3		4	Ę	5	e	5	7	7	8	3
Byte	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Bit	Ε	Х	А	М	Р	L	Е	spc	S	Т	R	Ι	Ν	G	İ	NULL

• Note: The OTT PLS 500 has only one "Holding Register" Block.

	•	•		•		
Register name	Register- number ¹⁾	Data type	Length	Access mode	min. / max.	Description
Protocol ID	1 (0)	uint 32	2	R		OTT Hydromet device assignment starting with register number 40001 and beginning with the 32-bit OTTP identifier
 ID protocol- description 	3 (2)	uint 16	1	R		0x0001 "Common Block"
 Length of protocol- description 	4 (3)	uint 16	1	R		16-bit register
Product ID	5 (4)	Integer 32 bit	2	R		Product ID 63039 (0x0000F63F)
Device ID	7 (6)	Integer 32 bit	2	R		Device ID 001 (0x00000001)
Firmware version	9 (8)	Integer 32 bit	2	R		V1.23.4 = 123400 (0x0001E208)
Bootloader version	11 (10)	Integer 32 bit	1	R		V1.23.4 = 123400 (0x0001E208)
 Reference system physical elements 	13 (12)	uint 16	1	R		0x001 = SHEF 0x002 = OTT
 Reference system units 	14 (13)	uint 16	1	R		0x001 = SHEF 0x002 = OTT
Number of channels	15 (14)	uint 16	1	R	1 40	Number of sensor channels: 13
 Channel 1 – definition of physical element 	16 (15)	uint 16	1	R		Mean value level or pressure HA, Height of reading (0x4841) HB, Depth of reading (0x4842)
Channel 2 – unit	17 (16)	uint 16	1	R		0x0002: M 0x0003: CM 0x0004: FT 0x0005: MBAR 0x0006: PSI 0x0007: INCH
						0x0008: BAR 0x0009: MM 0x000A: KPA
Channel 2 – unit string	18 (17)	uint 16	3	R		e.g. MBAR
 Channel 2 – definition of physical element 	21 (20)	uint 16	1	R		last single measured value Level or pressure value HA, Height of reading (0x4841) HB, Depth of reading (0x4842)
Channel 2 – unit	22 (21)	uint 16	1	R		0x0002: M 0x0003: CM 0x0004: FT 0x0005: MBAR 0x0006: PSI 0x0007: INCH
						0x0008: BAR 0x0009: MM 0x000A: KPA
Channel 2 – unit string	23 (22)	uint 16	3	R		compare "Channel1: unit string"

8.3 Function "Read Holding Registers" – Sensor description

Register name	Register- number ¹⁾	Data type	Length	Access mode	min. / max.	Description
 Channel 3 – definition of physical element 	26 (25)	uint 16	1	R		water temperature TW, Temperature Water (0x5457)
Channel 3 – unit	27 (26)	uint 16	1	R		0x0010: °C 0x0011: °F
						0x0012: Kelvin
Channel 2 – unit string	28 (27)	uint 16	3	R		compare "Channel1: unit string"
Channel 4 – definition of physical element	31 (30)	uint 16	1	R		Minimum level or pressure value HA, Height of reading (0x4841) HB, Depth of reading (0x4842)
▶ Channel 4 – unit	32 (31)	uint 16	1	R		0x0002: M 0x0003: CM 0x0004: FT 0x0005: MBAR 0x0006: PSI 0x0007: INCH
						0x0008: BAR 0x0009: MM 0x000A: KPA
Channel 4 – unit string	33 (32)	uint 16	3	R		compare "Channel1: unit string"
Channel 5 – definition of physical element	36 (35)	uint 16	1	R		Maximum level or pressure value HA, Height of reading (0x4841) HB, Depth of reading (0x4842)
► Channel 5 – unit	37 (36)	uint 16	1	R		0x0002: M 0x0003: CM 0x0004: FT 0x0005: MBAR 0x0006: PSI 0x0007: INCH
						0x0008: BAR 0x0009: MM 0x000A: KPA
Channel 5 – unit string	38 (37)	uint 16	3	R		compare "Channel1: unit string"
Channel 6 – definition of physical element	41 (40)	uint 16	1	R		Median level or pressure value HA, Height of reading (0x4841) HB, Depth of reading (0x4842)
► Channel 6 – unit	42 (41)	uint 16	1	R		0x0002: M 0x0003: CM 0x0004: FT 0x0005: MBAR 0x0006: PSI 0x0007: INCH
						0x0008: BAR 0x0009: MM 0x000A: KPA

Register name	Register- number 1	Data type	Length	Access mode	min. / max.	Description
Channel 6 – unit string	43 (42)	uint 16	3	R		compare "Channel1: unit string"
Channel 7 – definition of physical element	46 (45)	uint 16	1	R		Standard deviation of level or pressure value HA, Height of reading (0x4841) HB, Depth of reading (0x4842)
Channel 7 – unit	47 (46)	uint 16	1	R		0x0002: M 0x0003: CM 0x0004: FT 0x0005: MBAR 0x0006: PSI 0x0007: INCH
						0x0008: BAR 0x0009: MM 0x000A: KPA
Channel 7 – unit string	48 (47)	uint 16	3	R		compare "Channel1: unit string"
 Channel 8 – definition of physical element 	51 (50)	uint 16	1	R		Device status OS, Status of device (0x4f53)
Channel 8 – unit	52 (51)	uint 16	1	R		0x0001: none
Channel 8 – unit string	53 (52)	uint 16	3	R		compare "Channel1: unit string"
 Channel 9 – definition of physical element 	56 (55)	uint 16	1	R		relative humidity in the probe housing XR, Humidity, relative (0x5852)
Channel 9 – unit	57 (56)	uint 16	1	R		0x0010: %
Channel 9 – unit string	58 (57)	uint 16	3	R		compare "Channel1: unit string"
 Channel 10 – definition of physical element 	61 (60)	uint 16	1	R		dew point in the probe housing TD, Dew point (0x5444)
Channel 10 – unit	62 (61)	uint 16	1	R		0x0010: DEGREE C 0x0011: DEGREE F
						0x0012: Kelvin
Channel 10 – unit string	63 (62)	uint 16	3	R		compare "Channel1: unit string"
 Channel 11 – definition of physical element 	66 (65)	uint 16	1	R		temperature of internal humidity sensor TA, Temperature of air (0x5441)
Channel 11 – unit	67 (66)	uint 16	1	R		0x0010: DEGREE C 0x0011: DEGREE F
						0x0012: Kelvin
Channel 11 – unit string	68 (67)	uint 16	3	R		compare "Channel1: unit string"

Register name	Register- number	Data type	Length	Access mode	min. / max.	Description
 Channel12 – definition of physical element 	71 (70)	uint 16	1	R		current sensor orientation 0x0001: not defined
Channel 12 – unit	72 (71)	uint 16	1	R		0x0010: degree
Channel 12 unit string	73 (72)	uint 16	3	R		compare "Channel1: unit string"
 Channel 13 – definition of physical element 	76 (75)	uint 16	1	R		sensor orientation during installation 0x0001: not defined
Channel 13 – unit	77 (76)	uint 16	1	R		0x0010: degree
Channel 13 – unit string	78 (77)	uint 16	3	R		compare "Channel1: unit string"
 Channel 14 – definition of physical element 	81 (80)	uint 16	1	R		Discharge QR, Discharge river (0x5152)
Channel 14 – unit	82 (81)	uint 16	1	R		0x0002: Cubic meters per second [m ³ /s] 0x0003: Liter per second [l ³ /s] 0x0004: Cubic feet per second [ft ³ /s]
Channel 14 – unit string	83 (82)	uint 16	3	R		compare "Channel1: unit string"

8.4 Function "Read Holding Registers" – Sensor values

Register name	Register- number ¹⁾	Data type	Length	Access mode	min. / max.	Description
Channel 1	101 (100)	float 32	2	R		Mean value of measured values "level/pressure" within the averaging period
Channel 2	103 (102)	float 32	2	R		Last single measured value "level/pressure" within the averaging period
Channel 3	105 (104)	float 32	2	R		Temperature value
Channel 4	107 (106)	float 32	2	R		Minimum measured value "level/pressure" within the averaging period
Channel 5	109 (108)	float 32	2	R		Maximum measured value "level/pressure" within the averaging period
Channel 6	111 (110)	float 32	2	R		Median of measured values "level/pressure" within the averaging period
Channel 7	113 (112)	float 32	2	R		Standard deviation of measured values "level/pressure" within the averaging period
Channel 8	115 (114)	uint 32	2	R		device status

Register name	Register- number ¹⁾ [Data type	Length	Access mode	min. / max.	Description
Channel 9	117 (116) fl	loat 32	2	R		relative humidity in the probe housing
Channel 10	119 (118) fl	loat 32	2	R		dew point in the probe housing
Channel 11	121 (120) fl	loat 32	2	R		temperature of internal humidity sensor
Channel 12	123 (122) fl	loat 32	2	R		current sensor orientation
Channel 13	125 (124) fl	loat 32	2	R		sensor orientation during installation
Channel 14	127 (126) fl	loat 32	2	R		discharge

8.5 Configuration register

Register values/factory settings are described in Chapter 7 "SDI-12 commands and responses".

Changes to the Modbus communication settings will cause a Modbus timeout because the internal communication is restarted and the stack cannot respond. Successful changes are answered with a regular Modbus response, invalid data with "illegal data value" and unsupported register addresses with "illegal data address".

Please note: Changes to the SD-112 address will reset the entire system and cause a Modbus timeout.

Register name	Register- number ¹⁾	Data type	Length	Access mode	Description
Unit level/pressure	201 (200)	uint 16	1	R/W	Setting unit for level/pressure
Unit temperature	202 (201)	uint 16	1	R/W	Setting unit for temperature
Unit discharge	203 (202)	uint 16	1	R/W	Setting unit for discharge
Calculation method discharge	204 (203)	uint 16	1	R/W	Setting calculation method discharge
Local gravitational acceleration	205 (204)	float 32	2	R/W	Setting local gravitational acceleration
Water density	207 (206)	float 32	2	R/W	Setting water density
Salinity	209 (208)	float 32	2	R/W	Setting salinity
Units imperial/metric	211 (210)	uint 16	1	R/W	Select presetting of units
Depth measurement	212 (211)	uint 16	1	R/W	Activate depth measurement
Averaging time	213 (212)	float 32	2	R/W	Setting averaging time
Continuous measurement	215 (214)	uint 16	1	R/W	Activate measurment mode continuous measurement
SDI-12 address	216 (215)	uint 16	1	R/W	Setting SDI-12 asdress
Modbus bus address	217 (216)	uint 16	1	R/W	Setting Modbus bus address
Transmission speed	218 (217)	uint 16	1	R/W	Setting Modbus transmission speed
Modbus parity	219 (218)	uint 16	1	R/W	Setting Modbus parity

Settings of the exponential formula (Q = p (h - e)) according to ISO 1100-2:

Register name	Register- number ¹⁾	Data type	Length	Access mode	Description
Factor "e" of the exponential formula	251 (250)	float 32	2	R/W	Coefficient: offset "e"
Factor "p" of the exponential formula	253 (252)	float 32	2	R/W	Coefficient: scaling "p"
Factor "β" of the exponential formula	255 (254)	float 32	2	R/W	Coefficient: exponent "β"

The entries in the rating table can be set using the following two tabs. The value table is sorted in ascending order, therefore it is not possible to write directly into the value table. With the aid of the two registers, the OTT PLS 500 controls the correct insertion of the values into the rating table. If the maximum table size (50 entries) is reached, a write attempt is answered with "NAK not acknowledge".

To delete a specific entry, enter the water level of the entry to be deleted and a discharge value of "-9999" in the format "float32". To change a specific value, enter the water level of the entry to be changed and a new discharge value.

Please note: To correctly change entries in the rating table, the water level register **must be written first**. When writing a value to the discharge register, the register values of water level and discharge are taken over. If the sequence is not observed, both register values will be discarded!

Register name	Register- number ¹⁾	Data type	Length	Access mode	Description
Water level	261 (260)	float 32	2	W	write water level to associated discharge
Discharge	263 (262)	float 32	2	W	write discharge to associated water level

Register values with the entries "Water level" and "Discharge" of the rating table (empty entries are marked by the value "-9999" in the format "float32"):

number	Data type	Length	Access mode	Description
301 (300)	float 32	2	R	table entry 1: water level
303 (302)	float 32	2	R	table entry 1: discharge
305 (304)	float 32	2	R	table entry 2: water level
307 (306)	float 32	2	R	table entry 2: discharge
	float 32	2	R	table entry n: water level
	float 32	2	R	table entry n: discharge
497 (496)	float 32	2	R	table entry 50: water level
499 (498)	float 32	2	R	table entry 50: discharge
	301 (300) 303 (302) 305 (304) 307 (306) 497 (496)	flaget 22	301 (300) float 32 2 303 (302) float 32 2 305 (304) float 32 2 307 (306) float 32 2 float 32 2	301 (300) float 32 2 R 303 (302) float 32 2 R 305 (304) float 32 2 R 307 (306) float 32 2 R float 32 2 R

9 Carrying out maintenance work

The maintenance interval of the OTT PLS 500 strongly depends on the local ambient conditions. Even a thin build-up of deposits on the measuring cell will not appreciably affect the measurement results. If very heavy contamination occurs at the station due to algae, mud, vegetation or sediment, the pressure probe should be checked from time to time. For example, imprecise or implausible measured values may indicate a "blocked" measuring cell.

Maintenance plan

- recommended interval: every 15 months (adapt to local environmental conditions if necessary)
- work required:
- check pressure sensitive membrane of the pressure cell; clean if necessary
- check the desiccant of the humidity absorber; replace if necessary (see seaparate operating instructions for the humidity absorber used)

Check/replace desiccant of the humidity absorber

Required replacement parts

▶ Dry desiccant cartridge for replacement (color indicator→ orange =)

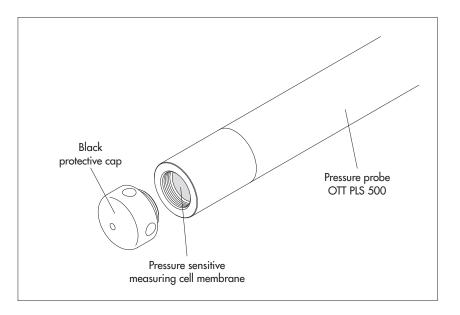
For procedure, see separate OTT FAD 4 and OTT FAD 6 assembly instructions.

Please note: With a correctly installed and regularly maintained humidity absorber, the relative humidity in the probe housing is always below 25 % (see Chapter 7.2, <valuel> in the response to aD0! after av!).

If the humidity rises above this, the OTT PLS 500 outputs error message +64 in the device status (<value9> in response to aD2! after aV!). This is usually an indication of an insufficiently maintained moisture absorber. Slightly increased values allow further operation of the pressure probe. In this case, however, errorfree measured values can no longer be guaranteed over the entire operating temperature range. When the dew point is reached, drops often form in the pressure compensation capillary, resulting in unusable measured values! If this occurs, the OTT PLS 500 must be replaced.

How to clean the pressure probe

Required equipment


- Brush with hard bristles
- Common household scale remover
- Clear water for rinsing the pressure probe

CAUTION Risk of injury to eyes and skin during maintenance works!

- When cleaning the measuring cell, aggressive dirt particles and acidic scale remover can get into the eyes/on the skin.
- Wear eye protection goggles during maintenance work!
- ▶ Wear suitable protective gloves during maintenance work!
- Deserve the application and warning instructions of the scale remover used!
- Uninstall OTT PLS 500 (see Chapter 5).
- Remove the black protective cap.
- Clean the measuring cell carefully using a brush (hard bristles). Lime scale deposits can be removed using a common household scale remover.
- Rinse the pressure probe **thoroughly** with clear water!
- Reattach the black protective cap.
- Reinstall OTT PLS 500 (see Chapter 5).
- Determine measured value and compare to reference value (staff gauge, contact gauge) and correct if necessary¹¹ (enter reference or offset value or use the scaling function of the connected data logger).

Fig. 10: Cleaning the pressure probe.

¹⁾ for example, via interface converter "OTT USB/SDI-12 Adapter" in combination with the PC software "OTT SDI-12 Interface"; see Chapter 6

10 Troubleshooting

Sensor does not respond on the RS-485/SDI-12 interface

- For SDI-12 protocol: Sensor correctly connected to a data logger with SDI-12 input?
 - → Correct connection assignment.
- Polarity of the supply voltage reversed?
 - → Correct connection assignment.
- Supply voltage < 5.5 V or > 28.8 V?
 - → Adjust level of voltage supplied (check the length and cross-section of the connection cable).
- Is the supply voltage not direct current?
 - \rightarrow Only operate the sensor with direct current.
- Does the sensor address of the OTT PLS 500 correspond with the sensor address used by the data logger?
 - \rightarrow Correct sensor address.

Sensor does not respond on the RS-485 interface to ...

- SDI-12 commands: is the RS-485 interface of the sensor configured to Modbusprotocol?
- → Test communication via Modbus communication.
- Modbus communication: is the RS-485 interface of the sensor configured to SDI-12 protocol?
 - \rightarrow Test communication via SDI-12 commands.

Sensor does not respond on the RS-485 interface

- "RS-485 A" and "RS-485 B" wires interchanged?
 - → Correct the wire assignment.

Measured value varies unexpectedly, jumps or is not present

- Sensor soiled
- → Clean sensor carefully; see Chapter 9, "Carrying out maintenance work". Installation of the sensor steady (e.g. movement from swell)?
- Control option: Perform system test of the OTT PLS 500 with av! and retrieve result with aD0! and aD1! (e.g. as described in Chapter 6). If <value3> deviates from <value4> by several degrees, this indicates a change in the orientation of the probe.
 - → Optimise installation.
- Condensed water drop in the pressure compensation capillary? Control option: Perform system test of the OTT PLS 500 with av! and retrieve result with aD0! (e.g. as described in Chapter 6). The <value1> shows the relative humidity inside the probe. If this is greatly increased, it indicates that moisture has penetrated the pressure compensation capillary. In most cases this type of error is caused by a missing or insufficiently maintained humidity absorber.
 - → Replace the pressure probe.

Various types of error

- Errors that cannot be narrowed down further occur; however, communication on the RS-485-/SDI-12 interface via SDI-12 commands is possible¹):
 - → Perform a system test of the OTT PLS 500 with av! and retrieve result with aD0! ... aD2!. For interpretation of the responses, see Chapter 7.2, aD0!, aD1! and aD2! after av!.
- ¹⁾ for example, via interface converter "OTT USB/SDI-12 Adapter" in combination with the PC software "OTT SDI-12 Interface"; see Chapter 6

11 Repair

- In the event of a problem with the device, refer to Chapter 10, "Troubleshooting", if you can resolve the problem yourself.
- In the event of a device defect, please contact the repair center of OTT HydroMet:

OTT HydroMet GmbH Repaircenter Ludwigstrasse 16 87437 Kempten · Germany Telephone +49 831 5617-433 Fax +49 831 5617-439 repair@ott.com

Please note: Only have a defective OTT PLS 500 checked and repaired by the repair center of OTT Hydromet! Under no circumstances carry out any repairs yourself. Any repairs or attempted repairs carried out by the customer will result in the loss of any guarantee rights.

12 Notes about the disposal of old units

Within the member countries of the European Union

In accordance with the European Union guideline 2012/19/EC, OTT takes back old devices within the member countries of the European Union and disposes of them in an appropriate way. The devices concerned by this are marked with the symbol shown here.

For further information on the return process, please contact your local sales contact. You will find the addresses of all sales partners in the internet on "www.ott.com". Please take into consideration also the national implementation of the EU guideline 2012/19/EC of your country:

For all other countries

- Dispose of the OTT PLS 500 properly after taking out of service.
- Observe the regulations valid in your country for the disposal of electronic devices!
- Never put the OTT PLS 500 into the normal domestic waste!

Materials used

see Chapter 13, "Technical data"

13 Technical data

Water level

- Measuring range Variant 1 Variant 2
 - Variant 3 Variant 4

. .

Resolution

Accuracy (linearity + hysteresis) Standard specification USGS specification (valid for variant code 1)

Long-term stability (linearity + hysteresis) Zero drift Units

Overload protection for the measuring cell (without permanent mechanical damage) Variant 1 (0 ... 10 m · 33 ft WC / 0 ... 1 bar) Variant 2 (0 ... 20 m · 66 ft WC / 0 ... 2 bar) Variant 3 (0 ... 40 m · 131 WC / 0 ... 4 bar) Variant 4 (0 ... 100 m · 328 ft WC / 0 ... 10 bar) Pressure sensor Temperature-compensated operating range

Water temperature

Measuring range Resolution

Accuracy

-20 ... +50 °C · - 4 ... +122 °F -40 ... +70 °C · -40 ... +158 °F Units

Relative humidity in the probe housing

Measuring range Resolution Accuracy

Units

Supply voltage Current consumption idle active

Interfaces

Measured physical parameters

0 ... 10 m ·33 ft water column /0 ...1 bar 0 ... 20 m .66 ft water column /0 ... 2 bar 0 ... 40 m ·131 ft water column /0 ... 4 bar 0 ... 100 m · 328 ft water column /0 ... 10 bar $0.001~m\cdot0.1~cm\cdot1~mm$ 0.001 inch · 0.001 ft 0.00001 bar · 0.01 mbar 0.0001 psi \leq ± 0.05 % full scale 0 ... 310 mbar: $\leq \pm 0,3$ mbar 310 ... 1000 mbar: ≤ ±0,5 mbar $\leq \pm 0.1$ %/a full scale $\leq \pm 0.05$ % full scale m · cm · mm inch · ft bar · mbar · kPa psi 6.7 bar 12 bar 16.7 bar 26.7 bar ceramic (Al₂O₃ 99,9 %), capacitive -20 (ice free) ... +70 °C · -4 (ice free) ... +158 °F -40 ... +70 °C ·-40 ... +158 °F 0.01 °C · 0.01 °K typ. ±0.05 °C; max. ±0.1 °C · typ. ±0.09 °F; max. ±0.18 °F typ. ±0.05 °C; max. ±0.15 °C · typ. ±0.09 °F; max. ±0.27 ° °C, °K, °F 0 ... 100 % rH 1 % rH typ. ±2 % rH (20 ... 80 % rH) max. ±3 % rH (0 ... 100 % rH) +5.5 ... +28.8 V_{DC}; typ. 12/24 V_{DC}

< 250 μΑ; typ. 15 μΑ < 4 mA; typ. 2.9 μΑ

SDI-12 version 1.4 EIA-485 (RS-485); SDI-12 protocol Modbus RTU – water level/hydrostatic pressure – water temperature – relative humidity in the probe housing – sensor orientation

Measured value processing	 Mean value* within a time interval
	 Minimum value* within a time interval
	 Maximum value* within a time interval
	– Median* within a time interval
	 Standard deviation* within a time interval
	– Hydrological discharge (Q)
	* Measured value: water level/hydrostatic pressure
Individually configurable functions	- Selection of units
	– Water density
	 Local gravitational acceleration
	- Salinity
	– Depth/level
	– Measurement interval
	– Offset
	– Cliser – Reference value
Maria and the off	
Measurement interval	0.5 59.5 s
Storage temperature	-40 +85 °C · -40 +185 °F
Mechanical data	
Dimensions	
Pressure probe L x Ø	194 mm x 22 mm
Cable length	2 200 m ±1 % ±5 cm · 6.5 656 ft ±1 % ±0.16 ft
Weight	
Pressure probe	approx. 0.650 kg
Pressure probe cable	approx. 0.055 kg/m
Material	
	POM statistics start 1 (520 (00 4 1)
Pressure probe housing	POM, stainless steel 1.4539 (904 L),
	resistant to sea water
Cable jacket	PUR
Seals	Viton
Separating membrane	ceramic Al ₂ O ₃
Type of protection	IP 68
Installation	
Minimum bending radius pressure probe cable	49 mm · 0.16 ft
Maximum total cable length	
SDI-12	200 m · 656 ft (point-to-point; no bus operation)
EIA-485 (RS-485)	1000 m · 3281 ft
Wire colors	
wire colors red	Supply voltage (155
	Supply voltage (+5.5 +28.8 V _{DC}) RS-485 A
orange	
green	RS-485 B
blue	GND SDI-12 data
grey	JUI-12 aata
Performance classification in	
accordance with DIN EN ISO 4373	
Measurement reliability	Performance class1
Temperature range	Temperature class 2
Relative humidity	Class 1
Product certification	
FCC	FCC/IECS Suppliers Declaration of Conformity (SDoC)
	FCC Part 15 Rules Section §15.109

The OTT PLS 500 complies with the Eurpean Uninon directives (IEC 61326-1: 2020) applicable at the time of production; For details, see Declaration of Conformity (www.ott.com/resources/)

EMC

Annex A - Shorten pressure probe cable

If required, you can shorten the pressure probe cable of an OTT PLS 500 independently. This is useful in all cases, where the local conditions require a significantly shorter cable length (a slightly too long pressure probe cable can also be looped – taking into account the minimum bending radius).

- **Please note:** Shorten a pressure probe cable only under completely dry ambient conditions! If possible, do this in an interior (e.g. in a workshop). No moisture
- may penetrate into the pressure compensation capillary!

Tools required

- OTT Stripping tool (order number: 99.000.136.9.5)
- Side cutting pliers
- Crimping pliers for end sleeves (+ end sleeves 0.25 mm²)

CAUTION Risk of cuts when trimming the pressure probe cable!

I

When trimming the pressure probe cable, the stripping tool/side cutting pliers can cause injuries to the fingers or hands.

- Wear protective gloves when trimming the pressure sensor cable.
- Shorten pressure probe cable by desired length.
- Strip pressure probe cable with OTT stripping tool;
- For dimensions, see Fig. A1:
- **Tip:** first practice stripping on a cable remnant.
 - place the OTT stripping tool on the cable sheath and cut carefully by rotating the tool; remove cable sheath;
 - pinch off the cable shield at the cable sheath and remove it;
 - pinch off and remove two black fillers at the end of the cable sheath;
 - pinch off and remove the violet Kevlar-strain relief at the end of the cable sheath;
 - strip five individual wires with the OTT stripping tool.
- Put end sleeves on the individual wires.
- Shorten pressure compensation capillary to 15^{±1} mm; do not cut at right angles but at an angle!
- Until final installation, protect the cable end from penetrating moisutre and dirt by using the supplied transport protection box.
- **Please note:** the cable shield must not be connected to earth/ground when installing the OTT PLS 500!

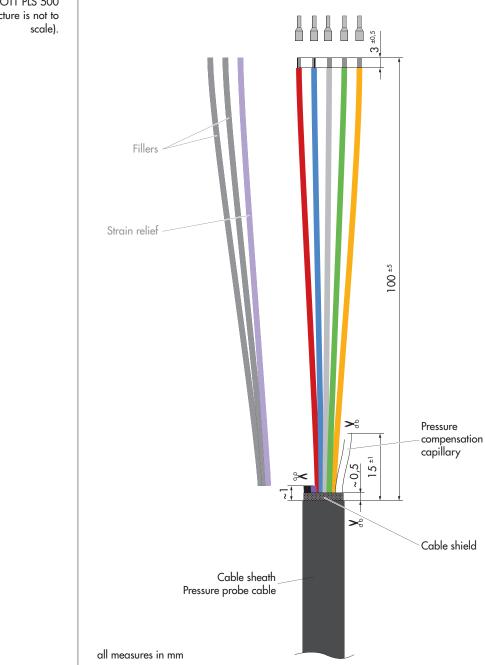


Fig. A1: Dimensions of the OTT PLS 500 pressure probe cable (picture is not to scale).

Annex B - Note on Declaration of Conformity

If necessary, you can download the current version of the Declaration of Conformity for the OTT PLS 500 as pdf file from our website: "www.ott.com/resources"!

OTT HydroMet GmbH Ludwigstrasse 16 87437 Kempten · Germany Telephone +49 831 5617-0 Fax +49 831 5617-209 euinfo@otthydromet.com www.otthydromet.com

Document number 63.039.001.B.E 02-0522